Lecture in Area Problem and the Riemann Sum Part 2

(Last Updated On: March 21, 2020)
Area Problem and the Riemann Sum Part II
This is the part II of the series Area Problem and the Riemann Sum. It is important not to miss the part I before you continue on this topic.

Riemann Sum

Lecture in Area Problem and the Riemann Sum Part 2
Riemann Sum is the total sum of n adjacent rectangles sideways on an interval [a,b] with a uniform positive widths and with heights determined by arbitrary values of a function.

When is Riemann Sum have Positive values

  • If f take positive values along the interval [a,b], just like in Figure 4, the function f is positive. All the heights of adjacent rectangles take positive values. In this case, we have adjacent rectangles with a positive heights and a positive widths. Therefore, The Riemann sum that approximates the area between the x-axis and f have positive values.
  • A positive area represents the fact that the particular rectangle is above the x-axis. 

When is Riemann Sum have Negative values

  • However, if f were to take some negative values along the interval [a,b], then some of the heights would be assigned negative values. Therefore, negative height values multiplied by negative width values give negative area values.
  • A negative area represents that the rectangle is below the x-axis (since its height is given by a negative value of f ).

What if function f takes both positive and negative values

  • If f is continuous and takes positive and negative values along [a,b], then any corresponding Riemann sum approximates a net area where the net area equals the difference between the area of regions above the x-axis but under f and the area of regions below the x-axis but above f.
  • In short, the areas of the rectangles above the x-axis minus the areas of the rectangles below the x-axis.

Exact Net Area Between f and the x-axis

Until now, I know after all these things, you might be asking, How to get the exact area then?
Here is the idea, I suppose you have the knowledge about Limit. Using the Riemann sum approximation, we will define the exact net area between f and the x-axis as the limit of the sum of the areas of approximating rectangles as the number of rectangles approach infinity (n → ∞) .
Assume that f is a continuous function along the interval [a,b] . The net area A of the region bounded by f and the x-axis is given by

Lecture in Area Problem and the Riemann Sum Part 2

where n represents the number of approximating rectangles with a uniform width equal to Δx = (b − a)/n and where xi represents some point in the ith subinterval of [a,b] .

Definite Integral

As long as f is continuous the value of the limit is independent of the sample points xi used. The definite integral of f from a to b is the number
Lecture in Area Problem and the Riemann Sum Part 2

provided the limit exists.

Sample Riemann Sum Problems

1. Use a Riemann sum to estimate the area between f and the x-axis along the interval [1,3] forf (x) = 0.25x3 .
Answer: Using four rectangles and right end points as the sample point in each subinterval:

Lecture in Area Problem and the Riemann Sum Part 2

2. Find the area between the curve y = x3 and the x-axis over the interval [0,2]. Use a sketches to show how to obtain over and under estimates for the area using Riemann sums.
Let y = f (x) . Note that the function increases. Arbitrarily select a number of rectangles like four. Determine the width of each rectangle.
Lecture in Area Problem and the Riemann Sum Part 2

For an over-estimate, select heights in a manner that too much area is included. A right Riemann sum will do the trick as below.
Lecture in Area Problem and the Riemann Sum Part 2
For an under-estimate, select heights in a manner that too little area is included. A left Riemann sum will suffice as shown.
Lecture in Area Problem and the Riemann Sum Part 2

For your exercise selects heights in the midpoints, make the graph and find the area. Let me know how well you get the answer by providing feedback on the comment section.
The next topic is Finding Areas using Definite Integration. See you there.

credit: Randell Simpson (Temple College)©2014 www.PinoyBIX.com

DOWNLOAD PDF / PRINT
Print Friendly, PDF & Email
Please do Subscribe on YouTube!

P inoyBIX educates thousands of reviewers and students a day in preparation for their board examinations. Also provides professionals with materials for their lectures and practice exams. Help me go forward with the same spirit.

“Will you subscribe today via YOUTUBE?”

Subscribe

Add Comment

PinoyBIX Engineering. © 2014-2020 All Rights Reserved | How to Donate? | Follow me on Blogarama DMCA.com Protection Status

Math Solution

Advanced Math problem age work mixture digit motion Analytic Geometry 01 problem Analytic Geometry 02 problem clock variation progression misc Combination problem Differential Calculus 01 Problem Differential Calculus 02 Problem Differential Equations Problem Fundamentals in Algebra Fundamentals in Algebra Problem Integral Calculus problem Permutation problem Plane Geometry problem Plane Trigonometry problem Probability problem quadratic equation binomial theorem logarithms Solid Geometry problem Spherical Trigonometry problem System of Numbers Problem Venn Diagram Problem

Questions and Answers in Mathematics

Advanced Math Age Work Mixture Digit Motion Algebra and General Mathematics Analytic Geometry 01 Analytic Geometry 02 Calculus Clock Variation Progression Misc Differential Calculus 01 Differential Calculus 02 Differential Equations Engineering Mathematics Geometry Integral Calculus Plane Geometry Plane Trigonometry Probability and Statistics Quadratic Equation Binomial Theorem Logarithms Solid Geometry Spherical Trigonometry System of Numbers Trigonometry

video

Pre-board in Electronics Engineering

Answers Pre-board in Electronics Engineering - Answers

Questions and Answers

Basic Television - Grob TV Boylestad Questions and Answers Computer Principles Electrical Circuit Electricity and Magnetism Fundamentals Electronic Circuits Floyd Questions and Answers Floyd Self-test Gibilisco Questions and Answers Grob Questions and Answers Industrial Electronics Principles and Applications Malvino Questions and Answers Microelectronics Power Generators / Sources / Principles and Applications Solid State Devices Tests and Measurements Vacuum Tubes

Pre-board in Communications Engineering

Answers

Questions and Answers

Acoustics Antennas Blake Questions and Answers Broadcasting and Cable TV System Digital Communication Networks Forouzan Frenzel Self-test Kennedy Questions and Answers Microwave Communications Miscellaneous Questions in Communications Modulation Navigational Aids and Radar Systems Noise Optical Fiber Communications Radiation and Wave Propagation Satellite Communications Transmission Fundamentals Wire and Wireless Communications

GEAS Solution

Dynamics problem Economics problem Physics problem Statics problem Strength problem Thermodynamics problem

Pre-board in GEAS

Questions and Answers in GEAS

Engineering Economics Engineering Laws and Ethics Engineering Management Engineering Materials Engineering Mechanics General Chemistry Giancoli Physics Physics Strength of Materials Thermodynamics
Online Tool: Electrical Charge Conversions
Online Tool: Electrical Charge Conversions
Online Tool: Color Code Conversions
Online Tool: Color Code Conversions
Online Tool: Weight Measurement Conversions
Online Tool: Weight Measurement Conversions
Online Tool: Temperature Measurement Conversions
Online Tool: Temperature Measurement Conversions