This is the part II of the series Area Problem and the Riemann Sum. It is important not to miss the part I before you continue on this topic.

### Riemann Sum

Riemann Sum is the total sum of

*n*adjacent rectangles sideways on an interval [a,b] with a uniform positive widths and with heights determined by arbitrary values of a function.### When is Riemann Sum have Positive values

- If
*f*take positive values along the interval [a,b], just like in*Figure 4*, the function*f*is positive. All the heights of adjacent rectangles take positive values. In this case, we have adjacent rectangles with a positive heights and a positive widths. Therefore, The Riemann sum that approximates the area between the*x*-axis and*f*have positive values. - A positive area represents the fact that the particular rectangle is above the
*x*-axis.

### When is Riemann Sum have Negative values

- However, if
*f*were to take some negative values along the interval [a,b], then some of the heights would be assigned negative values. Therefore, negative height values multiplied by negative width values give negative area values. - A negative area represents that the rectangle is below the
*x*-axis (since its height is given by a negative value of*f*).

###
What if function *f* takes both positive and negative values

- If
*f*is continuous and takes positive and negative values along [a,b], then any corresponding Riemann sum approximates a net area where the net area equals the difference between the area of regions above the x-axis but under*f*and the area of regions below the x-axis but above*f*. - In short, the areas of the rectangles above the
*x*-axis minus the areas of the rectangles below the*x*-axis.

###
Exact Net Area Between *f* and the *x*-axis

Until now, I know after all these things, you might be asking, How to get the exact area then?

Here is the idea, I suppose you have the knowledge about Limit. Using the Riemann sum approximation, we will define the exact net area between

*f*and the*x*-axis as the limit of the sum of the areas of approximating rectangles as the number of rectangles approach infinity (n โ โ) .
Assume that

*f*is a continuous function along the interval [a,b] . The net area*A*of the region bounded by*f*and the*x*-axis is given by
where

*n*represents the number of approximating rectangles with a uniform width equal to ฮx =*(b โ a)/n*and where*xi*represents some point in the*i*th subinterval of [a,b] .### Definite Integral

As long as

*f*is continuous the value of the limit is independent of the sample points*xi*used. The definite integral of*f*from*a*to*b*is the numberprovided the limit exists.

### Sample Riemann Sum Problems

1. Use a Riemann sum to estimate the area between

*f*and the*x*-axis along the interval [1,3] forf*(x)*= 0.25*x*3 .
Answer: Using four rectangles and right end points as the sample point in each subinterval:

2. Find the area between the curve

*y*=*x*3 and the*x*-axis over the interval [0,2]. Use a sketches to show how to obtain over and under estimates for the area using Riemann sums.
Let

*y*=*f (x)*. Note that the function increases. Arbitrarily select a number of rectangles like four. Determine the width of each rectangle.
For an over-estimate, select heights in a manner that too much area is included. A right Riemann sum will do the trick as below.

For an under-estimate, select heights in a manner that too little area is included. A left Riemann sum will suffice as shown.

For your exercise selects heights in the midpoints, make the graph and find the area. Let me know how well you get the answer by providing feedback on the comment section.

The next topic is Finding Areas using Definite Integration. See you there.

*credit: Randell Simpson (Temple College)**ยฉ2014 www.PinoyBIX.com*

Please do Subscribe on YouTube!

P inoyBIX educates thousands of reviewers and students a day in preparation for their board examinations. Also provides professionals with materials for their lectures and practice exams. Help me go forward with the same spirit.

โWill you subscribe today via YOUTUBE?โ

**What You Also Get: FREE ACCESS & DOWNLOAD via GDRIVE**

## TIRED OF ADS?

- Become Premium Member and experienced fewer ads to ads-free browsing.
- Full Content Access Exclusive to Premium members
- Access to PINOYBIX FREEBIES folder
- Download Reviewers and Learning Materials Free
- Download Content: You can see download/print button at the bottom of each post.

## PINOYBIX FREEBIES FOR PREMIUM MEMBERSHIP:

- CIVIL ENGINEERING REVIEWER
- CIVIL SERVICE EXAM REVIEWER
- CRIMINOLOGY REVIEWER
- ELECTRONICS ENGINEERING REVIEWER (ECE/ECT)
- ELECTRICAL ENGINEERING & RME REVIEWER
- FIRE OFFICER EXAMINATION REVIEWER
- LET REVIEWER
- MASTER PLUMBER REVIEWER
- MECHANICAL ENGINEERING REVIEWER
- NAPOLCOM REVIEWER
- Additional upload reviewers and learning materials are also FREE

## FOR A LIMITED TIME

If you subscribe for PREMIUM today!

You will receive an additional **1 month of Premium Membership** FREE.

For **Bronze Membership** an additional **2 months of Premium Membership** FREE.

For **Silver Membership** an additional **3 months of Premium Membership** FREE.

For **Gold Membership** an additional **5 months of Premium Membership** FREE.

Join the PinoyBIX community.

DaysHoursMinSec

This offer has expired!