adplus-dvertising

MCQ in Algebra and General Mathematics Part 3 | ECE Board Exam

(Last Updated On: January 2, 2021)

MCQs in Algebra and General Mathematics Part 3

This is the Multiple Choice Questions Part 3 of the Series in Algebra and General Mathematics topics in Engineering Mathematics. In Preparation for the ECE Board Exam make sure to expose yourself and familiarize in each and every questions compiled here taken from various sources including but not limited to past Board Examination Questions in Engineering Mathematics, Mathematics Books, Journals and other Mathematics References.

MCQ Topic Outline included in Mathematics Board Exam Syllabi

  • MCQ in Algebraic functions | MCQ in theory of Equations | MCQ in Factorization and Algebraic functions | MCQ in Ratio, Proportion and Variation | MCQ in Matrix theory | MCQ in Arithmetic and Geometric Progression | MCQ in Equations and Inequalities | MCQ in Linear and Quadratic Equations | MCQ in Complex Number System | MCQ in Polynomials | MCQ in Mathematical Induction | MCQ in Logic and Probability | MCQ in Statistics| MCQ in System of Numbers and Conversion | MCQ in Fundamentals in Algebra | MCQ in Binomial Theorems and Logarithms | MCQ in Age Problems | MCQ in Work Problems | MCQ in Mixture Problems | MCQ in Digit Problems | MCQ in Motion Problems | MCQ in Clock Problems | MCQ in Variation | MCQ in Progression | MCQ in Miscellaneous Problems

Continue Practice Exam Test Questions Part 3 of the Series

MCQ in Algebra and General Mathematics Part 2 | Math Board Exam

Choose the letter of the best answer in each questions.

101. The equation of whose roots are the reciprocal of the roots of 2x^2 – 3x – 5  = 0 is,

A. 5x^2 + 3x – 2 = 0

B. 2x^2 + 3x – 5 = 0

C. 3x^2 – 3x + 2 = 0

D. 2x^2 + 5x – 3 = 0

View Answer:

Answer: Option D

Solution:

102. In the equation x^2 + x = 0, one root is x equal to

A. 1

B. 5

C. 1/4

D. None of these

View Answer:

Answer: Option D

Solution:

103. Solve the value of “a” in the equation a^8 – 17a^4 + 16 = 0.

A. ± 2

B. ± 3

C. ± 4

D. ± 5

View Answer:

Answer: Option A

Solution:

104. Solve for x that satisfies the equation 6x^2 – 7x – 5 = 0.

A. 5/3 or -1/2

B. 3/2 or 3/8

C. 7/5 or -7/15

D. 3/5 or 3/4

View Answer:

Answer: Option B

Solution:

105. Find the values of x in the equation 24x^2 + 5x – 1 = 0.

A. (1/6 , 10

B. (1/6 , 1/5)

C. (1/2 , 1/5)

D. (1/8, 1/3)

View Answer:

Answer: Option B

Solution:

106. Determine k so that the equation 4x^2 + kx + 1 = 0 will have just one real solution.

A. 3

B. 4

C. 5

D. 6

View Answer:

Answer: Option B

Solution:

107. Solve for x: 10x^2 + 10x +1 = 0

A. -0.113, -0.887

B. -0.331, -0.788

C. -0.113, -0.788

D. -0.311, -0.887

View Answer:

Answer: Option B

Solution:

108. If 1/3 and -3/2 are the roots of a quadratic equation, then the equation is

A. 6x^2 + 7x – 3 = 0

B. 6x^2 – 7x + 3 = 0

C. 6x^2- 7x – 3 = 0

D. 6x^2- 7x + 1 = 0

View Answer:

Answer: Option C

Solution:

109. Which of the following is a root of this quadratic equation, 30x^2 + 49x + 20 = 0?

A. 0.6

B. -0.6

C. -0.8

D. 0.75

View Answer:

Answer: Option C

Solution:

110. What is the discriminant of the equation 4x^2 = 8x – 5?

A. 8

B. -16

C. 16

D. -8

View Answer:

Answer: Option B

Solution:

111. Given the equation 3x^2 + Bx + 12 = 0. What is the value of B so that the roots of the equation are equal?

A. 4

B. 8

C. 10

D. -12

View Answer:

Answer: Option C

Solution:

112. Find the term involving y5 in the expansion of (2x^2+ y)^10.

A. 8064x^10 y^5

B. 8046 x^5 y^5

C. 8046 x^10 y^5

D. 4680 x^5 y^5

View Answer:

Answer: Option C

Solution:

113. Find the 5th term of the expansion of (x^2 + 1/x)^10

A. 260x^6

B. 5040x^6

C. 210x^6

D. 420x^6

View Answer:

Answer: Option C

Solution:

114. In the expression of (x + 4y)^12, the numerical coefficient of the 5th term is,

A. 63,360

B. 126,720

C. 506,880

D. 253,440

View Answer:

Answer: Option C

Solution:

115. What is the fourth term of the expansion of (x + x^2)^1000?

A. 1650x^103

B. 161700x^103

C. 167100x^103

D. 167100x^103

View Answer:

Answer: Option C

Solution:

116. What is the numerical coefficient of the next term next to 495x^8y^4?

A. 660

B. 792

C. 990

D. 1100

View Answer:

Answer: Option B

Solution:

117. Find the 6th term of the expression of ((1/2a) – 3)^16

A. -66939/256a^11

B. -66339/128a^11

C. -33669/256a^11

D. -39396/128^11

View Answer:

Answer: Option B

Solution:

118. What is the coefficient of the term free of x of the expression of (2x – 5y)^4?

A. 256

B. 526

C. 265

D. 625

View Answer:

Answer: Option B

Solution:

119. Find the 6th term of (3x – 4y)^6.

A. -148,288x^3y^5

B. -548x^3y^5

C. -154,288x^3y^5

D. -1,548,288x^3y^5

View Answer:

Answer: Option B

Solution:

120. What is the sum of the coefficients of the expansion of (2x – 1)^20?

A. 0

B. 1

C. 2

D. 3

View Answer:

Answer: Option C

Solution:

121. What is the sum of the coefficients of the expansion of (x + y – z)^8

A. 0

B. 1

C. 2

D. 3

View Answer:

Answer: Option C

Solution:

122. Find the value of log848

A. 1.86

B. 1.68

C. 1.78

D. 1.98

View Answer:

Answer: Option C

Solution:

123.Evaluate the log6 845 = x.

A. 3.76

B. 5.84

C. 4.48

D. 2.98

View Answer:

Answer: Option C

Solution:

124. What is the value of log to the base 10 of 1000^3.3?

A. 10.9

B. 99.9

C. 9.9

D. 9.5

View Answer:

Answer: Option C

Solution:

125. What is the value of (log 5 to the base 2) + (log 5 to the base 3)?

A. 7.39

B. 3.79

C. 3.97

D. 9.37

View Answer:

Answer: Option B

Solution:

126. Find the value of log4 (log3 5)

A. 1.460

B. 0.275

C. 1.273

D. 0.165

View Answer:

Answer: Option B

Solution:

127. Given: log4 7 = n

Find: log4 (1/7)

A. 1/n

B. n

C. -1/n

D. –n

View Answer:

Answer: Option B

Solution:

128. IF loga 10 = 0.25, what is the value of log10 = a?

A. 2

B. 4

C. 6

D. 8

View Answer:

Answer: Option A

Solution:

129. Given: logb y = 2x + logb x. Which of the following is true?

A. y = b^2x

B. y = 2xb

C. y = (2x/b)

D. y = xb^2x

View Answer:

Answer: Option B

Solution:

130. Which value is equal to log to the base e of e to the -7x power?

A. -7x

B. 10 to the -7x power

C. 7

D. -7 log to the base 10

View Answer:

Answer: Option B

Solution:

131. Log of the nth root x equals log of x to 1/n power and also equal to:

A. log x / n

B. n log x

C. log(x to the base 1/n power)/n

D. (n – 1)log x

View Answer:

Answer: Option B

Solution:

132. Log (MN) is equal to:

A. Log M – N

B. Log M + N

C. N Log M

D. Log M + Log N

View Answer:

Answer: Option D

Solution:

133. What expression is equivalent to log(x) – log(y + z)?

A. log x + log y + log z

B. log [x / (y + z)]

C. log x – log y – log z

D. log y + log (x + z)

View Answer:

Answer: Option B

Solution:

134. Given: logb 1024 = 5/2

Find: b

A. 2560

B. 16

C. 4

D. 2

View Answer:

Answer: Option B

Solution:

135. Given: log3 (x2 – 8x) = 2

Find: x

A. -1

B. 9

C. -1 and 9

D. 1 and -9

View Answer:

Answer: Option C

Solution:

136. Solve for the value of x in the following equation: x3logx = 100x.

A. 12

B. 8

C. 30

D. 10

View Answer:

Answer: Option B

Solution:

137. Given: log 6 + log 4 = log 4 log (32 + 4^x). Find: x

A. 2

B. 3

C. 4

D. 6

View Answer:

Answer: Option A

Solution:

138. If log of 2 to the base 2 plus log of x to the base 2 is equal to 2, then the value of x is,

A. 4

B. -2

C. 2

D. -1

View Answer:

Answer: Option C

Solution:

139. Find the value of x if log12 x = 2.

A. 144

B. 414

C. 524

D. 425

View Answer:

Answer: Option C

Solution:

140. Solve for the value of x:

log 2x^3 + log (6/x) = 6.278

A. 379.65

B. 365.97

C. 397.56

D. 356.79

View Answer:

Answer: Option A

Solution:

141. Mary is 24 years old. Mary is twice as old as Ann was when Mary has as old as ANN is now. How old is Ann now?

A. 16

B. 18

C. 12

D. 15

View Answer:

Answer: Option B

Solution:

142. The sum of Kim’s and Kevin’s ages is 18. In 3 years, Kim will be twice as old as Kevin. What are their ages now?

A. 4, 14

B. 5, 13

C. 7, 11

D. 6, 12

View Answer:

Answer: Option B

Solution:

143. Robert is 15 years older than his brother Stan. However “y” years ago, Robert was twice as old as Stan. If Stan is now “b” years old and b>y, find value of (b – y)?

A. 15

B. 16

C. 17

D. 18

View Answer:

Answer: Option A

Solution:

144. JJ is three times as old as Jan – Jan. Three years ago, JJ was four times as old as Jan – Jan. The sum of their ages is

A. 20

B. 24

C. 28

D. 36

View Answer:

Answer: Option D

Solution:

145. A girl is one-third as old as her brother and 8 years younger than her sister. The sum of their ages is 38 years. How old is the girl?

A. 4

B. 5

C. 6

D. 7

View Answer:

Answer: Option C

Solution:

146. Paula is now 18 yrs. old and her colleague Monica is 14 yrs. old. How many years ago was Paula twice as old as Monica?

A. 5

B. 7

C. 8

D. 10

View Answer:

Answer: Option D

Solution:

147. A father tells his son, “I was your age now when you where born”. If the father is now 38 yrs. old, how old was his son 2 years ago?

A. 15

B. 17

C. 19

D. 21

View Answer:

Answer: Option B

Solution:

148. Six years ago, Karen was five times as old as Gina. In five years, Karen will be three times as old as Gina. What is the present age of Gina?

A. 17

B. 16

C. 15

D. 14

View Answer:

Answer: Option A

Solution:

149. At present, the sum of the parents’ ages is twice the sum of the children’s ages. Five years ago, the sum of the parents’ ages was 4 times the sum of the children’s ages. Fifteen years hence, the sum of the parents’ ages will be equal to the sum of the children’s ages. How may children are there?

A. 3

B. 4

C. 5

D. 6

View Answer:

Answer: Option C

Solution:

150. Nhicole is now twice as old as Vryan. Four years ago, Nhicole was three times as old as Vryan then. How old is Nhicole?

A. 14

B. 16

C. 18

D. 24

View Answer:

Answer: Option B

Solution:

Online Questions and Answers in Algebra and General Mathematics Series

Following is the list of multiple choice questions in this brand new series:

MCQ in Algebra and General Mathematics
PART 1: MCQ from Number 1 – 50                               Answer key: PART 1
PART 2: MCQ from Number 51 – 100                          Answer key: PART 2
PART 3: MCQ from Number 101 – 150                        Answer key: PART 3
PART 4: MCQ from Number 151 – 200                         Answer key: PART 4
PART 5: MCQ from Number 201 – 250                         Answer key: PART 5
PART 6: MCQ from Number 251 – 300                         Answer key: PART 6
PART 7: MCQ from Number 301 – 350                         Answer key: PART 7
PART 8: MCQ from Number 351 – 400                         Answer key: PART 8
PART 9: MCQ from Number 401 – 450                         Answer key: PART 9
PART 10: MCQ from Number 451 – 500                        Answer key: PART 10

Online Questions and Answers in Fundamentals in Algebra Series

Following is the list of practice exam test questions in this brand new series:

MCQ in Fundamentals in Algebra
PART 1: MCQ from Number 1 – 50                           Answer key: PART 1
PART 2: MCQ from Number 51 – 100                      Answer key: PART 2

DOWNLOAD PDF / PRINT
Print Friendly, PDF & Email
Please do Subscribe on YouTube!

P inoyBIX educates thousands of reviewers and students a day in preparation for their board examinations. Also provides professionals with materials for their lectures and practice exams. Help me go forward with the same spirit.

“Will you subscribe today via YOUTUBE?”

Subscribe

Add Comment

PinoyBIX Engineering. © 2014-2021 All Rights Reserved | How to Donate? | Follow me on Blogarama DMCA.com Protection Status