Uncategorized

Solution: What is the longest dimension of parallelepiped whose dimension is in the ratio 1:3:4?

What is the longest dimension of parallelepiped whose dimension is in the ratio 1:3:4?

Problem Statement:

A rectangular parallelepiped whose dimension is in the ratio 1:3:4. If the volume is 9000 cu.m. What is the longest dimension?

Problem Answer:

The longest dimension of parallelepiped whose dimension is in the ratio 1:3:4 is 36.34 m.

Solution:

Latest Problem Solving in Solid Geometry

div.feedburnerFeedBlock ul li {background: #E2F0FD;
list-style-type: none;
margin:0 0 5px 0px;
padding:5px 5px 5px 10px !important;
border: 1px solid #0080ff;
border-radius:8px;
-moz-border-radius:8px;
-webkit-border-radius:8px;
}

div.feedburnerFeedBlock ul li:hover {
background:#ffffff;
}

div.feedburnerFeedBlock ul li a{
color:#ffffff;
text-decoration:none;
}

div.feedburnerFeedBlock ul li a:hover {
text-decoration: underline;
color: #000000;
}
div #creditfooter{
display: none;
}

More Questions in: Solid Geometry

Online Questions and Answers in Solid Geometry

Leave a Reply

Your email address will not be published. Required fields are marked *